The versal Deformation of an isolated toric Gorenstein Singularity

نویسنده

  • Klaus Altmann
چکیده

Given a lattice polytope Q ⊆ IR, we define an affine scheme M̄ that reflects the possibilities of splitting Q into a Minkowski sum. On the other hand, Q induces a toric Gorenstein singularity Y , and we construct a flat family over M̄ with Y as special fiber. In case Y has an isolated singularity only, this family is versal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-parameter families containing three-dimensional toric Gorenstein singularities

(1.1) Let σ be a rational, polyhedral cone. It induces a (normal) affine toric variety Yσ which may have singularities. We would like to investigate its deformation theory. The vector space T 1 Y of infinitesimal deformations is multigraded, and its homogeneous pieces can be determined by combinatorial formulas developed in [Al 1]. If Yσ only has an isolated Gorenstein singularity, then we can ...

متن کامل

Toric I Q-gorenstein Singularities

For an affine, toric I Q-Gorenstein variety Y (given by a lattice polytope Q) the vector space T 1 of infinitesimal deformations is related to the complexified vector spaces of rational Minkowski summands of faces of Q. Moreover, assuming Y to be an isolated, at least 3-dimensional singularity, Y will be rigid unless it is even Gorenstein and dimY = 3 (dimQ = 2). For this particular case, so-ca...

متن کامل

Simultaneous minimal model of homogeneous toric deformation

For a flat family of Du Val singularities, we can take a simultaneous resolution after finite base change. It is an interesting problem to consider this analogy for a flat family of higher dimensional canonical singularities. In this note, we consider an existence of simultaneous terminalization for K. Altmann’s homogeneous toric deformation whose central fibre is an affine Gorenstein toric sin...

متن کامل

The Polyhedral Hodge Number H 2;1 and Vanishing of Obstructions

We prove a vanishing theorem for the Hodge number h 2;1 of projective toric varieties provided by a certain class of polytopes. We explain how this Hodge number also gives information about the deformation theory of the toric Gorenstein singularity derived from the same polytope. In particular, the vanishing theorem for h 2;1 implies that these deformations are unobstructed.

متن کامل

The polyhedral Hodge number h and vanishing of obstructions

We prove a vanishing theorem for the Hodge number h of projective toric varieties provided by a certain class of polytopes We explain how this Hodge number also gives information about the deformation theory of the toric Gorenstein singularity derived from the same polytope In particular the vanishing theorem for h implies that these deformations are unobstructed

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994